Unit 5F Changing sounds

ABOUT THE UNIT
Through this unit children learn that sounds are produced by vibrations and that these vibrations travel from the source through a variety of materials. Musical instruments are used to illustrate the range of ways of producing sounds and how pitch and loudness can be altered.

Experimental and investigative work focuses on:
• turning ideas into a form that can be investigated and making predictions
• deciding whether the evidence is sufficient to support the prediction.

Work in this unit also offers opportunities for children to use scientific knowledge and understanding about sound to explain familiar phenomena and to relate this to their understanding of musical instruments.

Hearing impaired children will need particular support in this unit. This will be helped by visual demonstrations of the properties of musical instruments and by attention to the vibrations as sounds are produced. It is important for teachers to help children to be sensitive to those who are hearing impaired.

This unit takes approximately 12 hours.

WHERE THE UNIT FITS IN
Builds on Unit 1F ‘Sound and hearing’ Children will not have learnt about sound in science during Key Stage 2. However, work in music will have extended their knowledge. It is therefore particularly important at the beginning of this unit to find out what children know and think.

Links with Units 4D, 5C and music and design and technology.

VOBACULARY
In this unit children will have opportunities to use:
• words related to sounds eg pitch, loudness, vibration, muffle, tuning
• near synonyms eg quiet, soft, noise, sound
• nouns and related adjectives eg loudness, loud, tension, tight
• expressions of contrast eg this sound is loud and high, this is loud and low
• generalisations about relationships between variables eg if I tighten the drum skin the pitch will go up.

RESOURCES
• selection of musical instruments
• tuning fork or forks
• clamp to attach a ruler to a desk or table
• buzzers/ticking clocks
• variety of materials eg foam sheeting, bubble wrap, woollen fabrics, newspaper, furry fabrics
• video of orchestra/band, or observation of school band/orchestra
• tuned drum
• wide-necked bottles
• secondary sources eg CD-ROMs, reference books providing information about aspects of sound
• sound meters

EXPECTATIONS
at the end of this unit
most children will:
• generalise that sounds are produced when objects vibrate; suggest how to change the pitch and loudness of the sounds produced by a range of musical instruments; recognise that sounds travel through solids, water and air; suggest how to investigate how well sound travels through different materials and say how good their evidence is

some children will not have made so much progress and will:
• suggest ways of producing sounds; distinguish between pitch and loudness, and suggest how to change the sound made by an instrument

some children will have progressed further and will also:
• describe ways in which the pitch of a sound made by a particular instrument or vibrating object can be raised or lowered and identify what is vibrating in a range of musical instruments
<table>
<thead>
<tr>
<th>LEARNING OBJECTIVES</th>
<th>POSSIBLE TEACHING ACTIVITIES</th>
<th>LEARNING OUTCOMES</th>
<th>POINTS TO NOTE</th>
</tr>
</thead>
</table>
| CHILDREN SHOULD LEARN | Review children’s existing ideas by providing a ‘circus’ of short activities eg trying out musical instruments which make sounds by banging, shaking, plucking, blowing; tapes of high, low, loud and quiet sounds; tapes of sirens approaching and going away; pictures of dogs or other animals pricking up their ears accompanied by questions eg
 - How do these instruments make a sound?
 - Which of these sounds is high, low, loud, quiet, going away, approaching?
 - Why do dogs and cats move their ears?
Discuss children’s answers with them. | CHILDREN | This activity is intended to find out about children’s existing knowledge and understanding of sound. Teachers will need to take this into account in their short-term planning of later activities.
SAFETY – Children should be warned that loud sounds, including loud music, can damage the ears. |
| • that sounds are made when objects or materials vibrate | • Demonstrate to children a number of examples of sounds associated with visible vibrations eg a drum skin with rice grains on it, a plucked elastic band, a tip of a vibrating tuning-fork placed in a beaker of water, a ruler clamped to a table and tapped at one end and some sounds associated with vibrations they can feel with their fingers but not see eg a cymbal that has been hit, a speaker for a stereo system, their larynx as they talk.
• Ask children to record in writing or in drawings what they see and feel with their fingers and to state what is common to the sources of sound. | • describe what they see or feel eg the rice jumped up and down when the drum was hit, I couldn’t see the tuning-fork vibrate but it made the water splash out of the beaker, I could feel my larynx (throat) vibrating when I talked
• generalise that when a sound is made something is vibrating | At this stage children do not need to know about the structure of the ear.
Belair F1
A&C Black Developing Science Year 5 p 54 |
| • to make careful observations | • Ask children to listen carefully for sounds they can hear which are made outside the classroom. Include sounds which they regularly hear through walls/doors eg school bell, children talking in the corridor outside.
• Arrange for a loud sound to be made outside the classroom and ask children what it has travelled through eg bricks, walls, wood, door, air to reach their ears. | • state that a sound has reached them by travelling through solid eg brick, wood and gas (air) | Teachers may wish to contrast light and sound. Light does not travel through opaque solids eg wood whereas sound travels well.
Sounds can also travel through liquids. This is less likely to be shown through this activity.
Belair F5
A&C Black Developing Science Year 5 p 55 |
<p>| • to draw conclusions about sounds from their observations | | | |
| • that vibrations from sound sources travel through different materials to the ear | | | |</p>
<table>
<thead>
<tr>
<th>LEARNING OBJECTIVES</th>
<th>POSSIBLE TEACHING ACTIVITIES</th>
<th>LEARNING OUTCOMES</th>
<th>POINTS TO NOTE</th>
</tr>
</thead>
</table>
| CHILDREN SHOULD LEARN | ♦ Show children using a ticking clock or buzzer that sounds can be heard through a variety of materials *eg putting it in water, sand, a wooden box.*
♦ Ask children to press their ear to the desk while a partner taps quietly on the desk (demonstrating that sound travels better through solid materials than gas).
♦ Extend children’s experience with other activities *eg listening to a ticking clock on a wooden table by putting their ear to the table, putting their ear to a radiator and hearing the water circulating, using a ‘string telephone’.*
♦ Ask children to make a table showing the materials tested and whether the sound travelled through them well and discuss what their results show. | ♦ record *eg in a table* observations indicating how well sound travels through different materials
♦ generalise that sound can travel through solids, liquids and gases | Children may be familiar with sounds travelling through water through films involving submarines and the use of sonar or in the way whales communicate with each other.
SAFETY – Check that radiators are not too hot.
(see above Belair F5 A&C Black Developing Science Year 5 p 55) |
| CHILDREN | ♦ that some materials are effective in preventing vibrations from sound sources reaching the ear | ♦ Discuss with children why sometimes it is important to prevent sounds travelling.
♦ Ask them to suggest how this is done *eg ear muffs, ear plugs, soft floor coverings.*
♦ Walk around the school to see where sounds *eg footsteps* are loud and where they are not. Ask children to describe what they observed. | ♦ describe ways of reducing the level of sound reaching the ear *eg by having carpets, by using ear muffs, ear plugs* | Children may well have seen people using noisy equipment *eg road drills* and wearing ear protection. This could provide a stimulus for discussion.
SAFETY – Warn children of the danger of putting objects in the ear unless they are specially designed for this *eg ear plugs.*
Belair F4 A&C Black Developing Science Year 5 p 58 |
<table>
<thead>
<tr>
<th>LEARNING OBJECTIVES</th>
<th>POSSIBLE TEACHING ACTIVITIES</th>
<th>LEARNING OUTCOMES</th>
<th>POINTS TO NOTE</th>
</tr>
</thead>
</table>
| CHILDREN SHOULD LEARN | ♦ Present children with a range of materials *eg* bubble wrap, foam sheeting, artificial fur, blanket material and ask them how they could find out which would be best for muffling a sound *eg* in ear muffs, soundproofing a model house. Ask children to think about and suggest:
 − how they will make fair comparisons of whether the sound is muffled
 − what they will use as a sound source *eg* a ticking clock
 − what they will vary *eg* the material, the number of layers of the material, the area of the material.
Help children to carry out what they planned to do. (Sound meters are available) | ♦ predict with a reason what they think will be effective *eg* fur will be good because ear muffs are usually furry, a blanket won’t be good for sound proofing because it’s too thin
plan how to answer the question showing they are trying to keep the test fair *eg* ‘I’ll use one thickness of bubble wrap, one thickness of foam sheeting and sit two metres away from the clock and see if I can hear it ticking’ or ‘I’ll start with one thickness of fur, then two, then three and see when I can’t hear the clock anymore. Each time I’ll sit in the same place and the clock will be in the same place’ | This activity offers children the opportunity to carry out a whole investigation. It may be helpful to focus on the aspects of investigation highlighted in the learning objectives. |
<p>| to plan a test to measure or observe how well different materials muffle sound | to use a prediction to help decide what evidence to collect | to devise a fair comparison of different materials | to decide how to use a sound source and a range of different materials to collect reliable evidence |</p>
<table>
<thead>
<tr>
<th>LEARNING OBJECTIVES CHILDREN SHOULD LEARN</th>
<th>POSSIBLE TEACHING ACTIVITIES</th>
<th>LEARNING OUTCOMES CHILDREN</th>
<th>POINTS TO NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>• to decide whether their results support or do not support the prediction or whether the evidence is not good enough</td>
<td>◆ Ask children to describe to others in the class what they did and what they found out.
◆ Encourage children to question each other about the chosen method.
◆ Ask children to explain how they could improve their experiment if they were able to repeat the activity.</td>
<td>◆ describe what they did and explain whether they were satisfied that the evidence they collected allowed them to answer the question
◆ suggest ways in which their work could be improved eg I should have used a quieter buzzer, it would have been easier to tell if the ear muffs worked</td>
<td></td>
</tr>
<tr>
<td>• that the term ‘pitch’ describes how high or low a sound is</td>
<td>◆ Ask children to demonstrate playing a range of musical instruments or show children a video of a band or orchestra playing.
◆ Talk with children about sounds made by individual instruments and help them to describe the pitch of sounds using terms eg high, low and the loudness of sounds eg loud, soft.</td>
<td>◆ identify high, low, loud and soft sounds produced by musical instrument(s) and recognise in any piece of music that there is a variety of sounds of differing pitch and loudness</td>
<td></td>
</tr>
<tr>
<td>• that the pitch of a drum depends on its size and the tightness of its skin
• that high and low sounds can be loud or soft
• to suggest how to change the pitch and loudness of drum sounds and to carry out simple tests of these</td>
<td>◆ Ask children to play a number of drums to show how the pitch of a drum varies with size
◆ show how the pitch of a drum can be changed by tightening the skin.
◆ Ask children to suggest how to make particular sorts of sound eg a high, loud sound and test their ideas.</td>
<td>◆ state that small drums have a generally higher pitch than larger drums and explain that the screws on the sides of the drum tighten or loosen the skin to change the pitch</td>
<td></td>
</tr>
<tr>
<td>LEARNING OBJECTIVES CHILDREN SHOULD LEARN</td>
<td>POSSIBLE TEACHING ACTIVITIES</td>
<td>LEARNING OUTCOMES CHILDREN</td>
<td>POINTS TO NOTE</td>
</tr>
<tr>
<td>---</td>
<td>-----------------------------</td>
<td>--------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>• that the pitch of a stringed instrument depends on the length, thickness and tightness of the string
• to suggest how to change the pitch and loudness of the sounds of stringed instruments</td>
<td>♦ Ask children or others to demonstrate differences in the strings of a stringed instrument and how the note from a particular string can be changed by changing the length of the string or tuned by altering its tension. Illustrate the variety of pitch and loudness by asking children to suggest how to change a sound eg make the string longer and pluck it harder and to test their ideas.</td>
<td>• suggest ways of changing sounds made by a stringed instrument eg if I increase the length of the string the sound will be lower</td>
<td>SAFETY – Care needs to be taken when strings are stretched. If over-stretched, strings may break and flick back painfully.</td>
</tr>
<tr>
<td>• suggest ways of changing sounds made by a stringed instrument
• to suggest how to alter the pitch of a sound made by air vibrating and to test the prediction
• to listen carefully to sounds made, to record results in a suitable table and decide whether these support the prediction made
• to describe how the pitch of notes on a recorder (or other wind instrument) can be altered by changing the length of the air column vibrating</td>
<td>♦ Show children how to make a sound by blowing across the top of a bottle and ask them to suggest what is vibrating. Ask them to suggest how to change the pitch of the sound eg if you put more water in the bottle the sound will get higher, to test out their predictions, and to record observations in a suitable table or chart. Discuss with children whether the results they collected supported the prediction. Ask children to play high or low notes on a recorder (or other wind instrument) and to describe what they do to alter the pitch. Ask them to relate this to the length of the air column vibrating.</td>
<td>• recognise that the air in the bottle is vibrating, predict eg putting more water in the bottle will make the note higher and decide whether the prediction was correct eg every time I added more water the note got higher. I was right
• describe eg on an annotated drawing that when the length of the air column in a recorder is altered the pitch varies</td>
<td>Sounds can be made with bottles or other containers partly filled with water by blowing across the top or by tapping. If more water is added the sound made by blowing gets higher in pitch because it is the air column vibrating and this gets shorter. The sound made by tapping gets lower because it is the water which vibrates and the water column is longer.
SAFETY – LEA/school guidelines on the use of glass must be observed. Year 5 children should normally be mature enough to handle glass objects eg bottles safely. However in some classes eg mixed age classes or if supervision is difficult, alternatives may be necessary.</td>
</tr>
<tr>
<td>• to relate their understanding of sound to a range of musical instruments
• to explain an application of sound using scientific knowledge and understanding</td>
<td>♦ Ask children to use secondary sources eg CD-ROMs, reference books to find out about other aspects of sound eg other musical instruments, soundproofing and to present information to the class. Ask the children questions and encourage them to ask questions of others about the information presented.</td>
<td>• present information relating to, and ask questions about, applications of sound and relate these to scientific knowledge eg of vibration, pitch, changing pitch, sounds travelling</td>
<td></td>
</tr>
</tbody>
</table>

adapted from QCA Science Scheme of Work Unit 5f
www.MrJennings.co.uk or www.MrJennings.net
GJ Sept 2003